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BARO- AND THERMODIFFUSION OF A GAS MIXTURE IN A CAPILLARY 

V. M. Zhdanov UDC 532.529 + 532.72 + 533.6.001 

In the presence of a solid surfaces confining the flow, the hydrodynamic and diffusional 
transfer of a gas mixture has a number of peculiarities which distinguish it clearly from the 
behavior of a mixture in free space. For example, in the analysis of slow flows of a mix- 
ture in a capillary, even in the region close to the viscous mode of flow (low Knudsen num- 
bers), it proves important to allow for diffusional slippage at the channel wall, the contri- 
bution of the Knudsen boundary layers to the velocity components averaged over a cross sec- 
tion, etc. [1-4]. For this reason, in particular, expressions for the diffusional veloci- 
ties of the components obtained within the framework of the ordinary kinetic analysis, and 
valid far from the walls [5, 6], prove to be not fully correct in a description of diffusion- 
al transfer inside a capillary. 

Below we discuss the derivation of a general expression for the diffusional flux of a 
gas mixture in a capillary in the presence of longitudinal gradients of concentration, pres- 
sure, and temperature. This analysis is confined to the region of low Knudsen numbers (Kn = 
%/d < i, where % is the effective mean free path of the molecules and d is characteristic 
transverse size of the channel)~ Under these conditions the averaged diffusional flux does 
not depend on the channel geometry in a first approximation with respect to the Knudsen num- 
ber [4]. 

Let us consider the flow Of a gas mixture in a channel bounded by two infinite parallel 
planes at x = • Let gradients of partial pressure and temperature exist in the z direc- 
tion. For small k s = pa-ldpa/dz and T = T-*dT/dz the linearized kinetic equation for the 
mixture takes the form [7] 

v=[k~ + ( ~  --  5/2) ~] + v~xO~/Ox = E Z ~ r  (1) 

where  Ca i s  a n o n e q u i l i b r i u m  c o r r e c t i o n  to  t h e  d i s t r i b u t i o n  f u n c t i o n  of  p a r t i c l e s  o f  t y p e  a ,  
d e f i n e d  by t h e  e q u a t i o n  

f~ (va, x, z) =/a(~ + k~z + (~av e -- 5/2) ~z + Ca (v~,x)],/~). = n~  (~alg) 8/2 exp (-- ~;-), ~a "2kr;ma 

(the index 0 corresponds to the parameters of an absolute Maxwellian distribution). 
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Equations for the moments of the distribution function which follow from (i) are needed 
below. For a linearized collis~on operator it is convenient to use the McCormack model [8] 
for this, which assures that the nonzero moments of the collision integral from the exact 

^ N and model representations s and L( )r coincide to within the first N moment equations. Then 
for N = 3 the integration of (I) with a weight ~a(c~)exp(--CaU), where ~a = Caz, C~xCaz, and 
Caz(Ca u -- 5/2) for c a = 8a*/Uva, leads to moment equations in the form 

-- pttka - OII~=z/Ox -= k r  E {(nanf/n [Daal~) 
f~ 

(u=, - -  u~z) + ~ [(haJm~pa) - -  (ht~z/mt~p~)]}; (2) 

�9 - -  paf;,i'/~OQ~=lox = p" ~,, aat~nt~Jp~; (3) 
f~ 

- -  p a T a  - -  ( 2 i 5 )  a,,,~/aX (p~/r) ~ b=.h~./p~ + (kr/.,a) ~ ~a~ (u= -- u~). (4) 

The r i g h t  s i d e s  of  ( 2 ) - ( 6 )  c o i n c i d e  w i t h  t h e  e x p r e s s i o n s  o b t a i n e d  in  [6] i n  G r a d ' s  ap-  
p r o x i m a t i o n  of  13 moments.  The v a l u e s  o f  [Das] ,  , ~aS,  a a S ,  and ba8 , e x p r e s s e d  t h r o u g h  the  
we l l -known Chapman-Cowling i n t e g r a l s  ~Zr [5 ] ,  a r e  a l s o  g i v e n  t h e r e .  The q u a n t i t i e s  Uaz, ~axz.  a~  

and haz a r e  the  m a c r o s c o p i c  v e l o c i t y ,  t h e  n o n d i a g o n a l  p a r t  of  t h e  s t r e s s  t e n s o r ,  and the  r e l -  
a t i v e  h e a t  f l u x  o f  p a r t i c l e s  o f  t y p e  a ,  r e s p e c t i v e l y ,  w h i l e  f o r  t h e  moments Qaz and Paxz ,  we 
have 

p = , =  2=_a/,pa~c=ca.[ c, 5 ~O=exp(--c~)dea. k ~ - T )  

The values of the diffusional fluxes of the components averaged over the channel cross 
section can be obtained by integrating Eqs. (2) and (4) over x from--d/2 to +d/2, expressing 
hSz from (4), and substituting their values into (2)~ For a two-component mixture, in par- 
ticular, we find* 

Y, = ny,y~(<u~> - -  <u2~>) = --nlDnl~ {dy/d~ + (yFp)dpldz + [ ~ r l , y N f l  In T/dz + (5) 

(2~d) IHl~(d/2) + ~ P ~ ( ~ 2 )  + ~P2~(~2)  I}, 

where Ya = Pa /P-  E x p r e s s i o n s  f o r  the  c o e f f i c i e n t  o f  d i f f u s i o n  [D,212 = [ D ~ 2 ] , / ( 1 - -  A , 2 ) ,  
where A,u is the correction of the second approximation, and for the thermodiffusion constant 
[aT], can be found in [5, 6]; the coefficients ~, and ~u are determined from the equations 

where C~= o1~lqnU 

ml.~Z 

2 
~1Yl -{- ~2Y~ == -5-- [ccrhyNv 

--m,~,= 2 /(~ .,. ' . T ( m l - t -  mz) An -5- Cl2 -- t),  

To obtain the final result we must find ~axz and P~xz at the channel wall. For this we 
use Loyalka's approximate method [9, i0], in which the distribution function of particles in- 
cident on the wall is assumed to retain the same structure as the asymptotic distribution 
function valid far from the wall, but with an arbitrary constant determined from the condi- 
tion of conservation of the tangential component of the total momentum flux in the gas. 

We introduce distribution functions of the incident and reflected particles such that 
~ = ~+ for C~x > 0 and ~a = ~a- for Cax < 0 (Cax > 0 corresponds to the positive direction 
of the x axis). Using the usual Maxwellian condition of particle reflection at a wall, for 
the functions ~• at x = d/2 we have 

-- as 4 ~112 -Ih~ C 2), (I)~ (c~,d/2) = "2~[ = (a + w~) ca~ ~- 2pa' • H ~  (d/2)c~xc~ + yp~ i a ~ ~ (c~ -- 5 (6) 

�9 J (cax, ca v, ca~, d/2) : (l  - -  • d)~ ( - -  c~x, car, ca,. d/2), 

�9 Ja = Ga -- Gya, where G a = na<ua> is the diffusional flux of component a in the frame of ref- 
erence where an overall molar flux G of the mixture is absent. We note that J, = --J2 for a 
two-component mixture. 
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where a is an arbitrary constant; ~= is the fraction of particles undergoing diffuse reflec- 
tion at th~ wall. Knowing w ac = u ac -- u ac (u z is the average-mass velocity of the mixture), 

~Z ~Z Z 

we determine E as and h as through the solutions of Eqs. (2)-(4) which are valid far from the 
OUKZ ~Z 

wall, where the distribution function corresponds to the usual approximation of 13 moments, 
thanks to which we have the conditions [6] 

Q~ f~,~(~ 2 _,has~ pa L as = u~,  + --g- p~ =,), = n<<=. 

The solutions obtained in this region depend formally on the boundary conditions, al- 
though the terms connected with them decline exponentially at distances on the order of sev- 
eral mean free paths from the wall, so that far from the wall w as and h as hardly depend on 

(~Z ~ Z  

x, coinciding with the results obtained in [6], while for ~as we have 
~xz 

( z  

where ~a is the partial coefficient of viscosity [6]. 

We define the value of H~xz (d/2) at the wall as 

n~= (d /2 )=  2n-~,'-p~ f [ c~:dca:dca~ c ~ r  + (ca,d 2) exp ( - -  c~) dc~= + .[ c:~r (e~, d/2) exp (--  c~) dc=, . (7) 

We note that from Eq. (2), after summation over a and integration from--d/2 to +d/2, 
we get 

H =  (d/2)  = E H ~ =  (d/2)  = - -  (d/2)  dp/dz m IIa~ (d/2) .  (8) 

For simplicity, let us consider the case of • = 1 (fully diffuse reflection). Substi- 
tuting (6) into (7), integrating over the velocities, and using (8), we find 

~ p  IP1112 [ ' - - - ~  d - ~ z  

Calculating the quantities Hax z (d/2) and Paxz (d/2) with this value of a, we have (a, 
= I, 2) 

4 d= \ ~  + ~l / (2~..r) '1~ (,,,1,">)y u,==- e ~  + P= P~ 1 ' 

"1 d lla dp 6 [ n'~z \112 as 

~1/2 m),j --- rn~/~'yl + m~l"y~. 

Substituting Haxz (d/2) and Paxz (d/2) into (5), we can find that the parts of them pro- 
portional to w as and h as make contributions to J, corresponding to the second order with re- 

~ Z  ~ Z  

spect to the K nudsen number. The remaining terms only affect the value of the coefficient 
to the pressure gradient, as a result of which J, takes the form J, =--n[D,212 [dy,/dz + 

t a}); Api . 2 + apylg2 d l n  p/dz + [arllyly~• d l n  T/dz], where a v = y ( [ ~ p ] 2  @ [ap]e = [aplx( t --  -~[aT]l; 

~ p _  m2 ml" ~L 111 ; Ap 
( . y 2 ) y  5; [%]1 = Y,~" Yl = "~ - -  ~1; 

~ ] to " 112 

The main r e s u l t  d i s t i n g u i s h i n g  J ,  f rom the  we l l -known e x p r e s s i o n s  o f  [5,  6] c o n s i s t s  i n  
a new v a l u e  o f  t he  b a r o d i f f u s i o n  c o n s t a n t ,  e q u a l  to  h a l f  t h e  sum of  t h e  two v a l u e s  o f  [=p]2 
and ap k .  The f i r s t  o f  t h e s e  c o i n c i d e s  w i t h  t h e  b a r o f i f f u s i o n  c o n s t a n t  i n  a v i s c o u s  s t r e a m ,  
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first calculated in [6] and actually figuring in the expression for the difference between 
u as -- u as. The second value, as is easy to ascertain, the asymptotic velocity components, *z 2z 

equals (with the opposite sign) the coefficient of diffusional slip ~,= obtained in [i]. As 
for the thermodiffusion constant, its difference from the usual value [aT], appears only in 
the next order with respect to the Knudsen number.* 

As an illustration of the difference between ap and [ap]2 let us consider the case of a 
mixture having a small relative difference between the masses and the scattering cross sec- 
tions of the component molecules of the mixture. Then for the model of molecules as rigid 
spheres with diameters d, and d2, the general expression for ap takes the form 

a~ = i.275(m2-- mi)l(m2 + m i ) -  0,597(4 -- d~)l(d2 + d(). (9) 

I n  t h e  e x p r e s s i o n  f o r  [ ap ]2  t h e  c o r r e s p o n d i n g  c o e f f i c i e n t s  a r e  1 .405  and - -1 .263 .  The 
new b a r o d i f f u s i o n  c o n s t a n t  g i v e s  h a l f  as  s t r o n g  a dependence  on t h e  r e l a t i v e  d i f f e r e n c e  i n  
t h e  c o l l i s i o n  c r o s s  s e c t i o n s  o f  t h e  m o l e c u l e s  and a f a i r l y  c l o s e  dependence  on t h e  r a t i o  o f  
masses  o f  t he  component  m o l e c u l e s .  Here we do n o t  g i v e  t h e  c o m p l e t e  e x p r e s s i o n  f o r  ap ob-  
t a i n e d  by d r o p p i n g  t h e  a s s u m p t i o n •  = 1. I f  i n  a d d i t i o n  t o  t h e  c o n d i t i o n s  o f  t h e  p a r t i c u l a r  
c a s e  c o n s i d e r e d  a b o v e ,  howeve r ,  we assume the  p r e s e n c e  o f  a s m a l l  r e l a t i v e  d i f f e r e n c e  be tween  
ul and ~2 (with ulq-u2~2), then an additional term of the type 1.90(• appears 
in Eq. (9) for ap, whereas [ap]2 does not depend on the character of molecular scattering at 
the wall. 

We note that the values of the baro- and thermodiffusion constants essentially deter- 
mine the effect of separation of a gas mixture in a capillary [I, 4], and the expressions ob- 
tained above can be used to estimate it for Kn<<l. 

The author thanks Yu. M. Kagan for interest in the work and useful comments~ 
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